X
Bertrand Garé / mercredi 4 juillet 2018 / Thèmes: Dossier, Big Data

Rencontre avec Joe Hellerstein

Une carrière dédiée à la donnée

Professeur à Berkeley et fondateur de Trifacta, il est un des spécialistes de la donnée les plus respectés aux États-Unis. Peu connu en France, Joe Hellerstein est chercheur dans le domaine de la contextualisation des données. De passage à Paris, il a accepté de rencontrer L’Informaticien pour revenir sur son parcours et sur ses travaux actuels.

 

Sa carrière dans la recherche et l’industrie s’est concentrée sur les systèmes centrés sur les données et la façon dont ils conduisent l’informatique. En 2010, Fortune Magazine a inclus Joe Hellerstein dans sa liste des 50 personnes les plus intelligentes en technologie, et le magazine MIT Technology Review a inclus son langage Bloom pour le Cloud Computing sur sa liste TR10 des dix technologies « les plus susceptibles de changer notre monde ». 

En 2011, Hellerstein, Jeffrey Heer, un autre professeur à Stanford, et Sean Kandel, un étudiant et ex-analyste de données dans une banque américaine, ont publié un article intitulé “Wrangler : Spécification visuelle interactive des scripts de transformation de données.” Dans ce document, les auteurs ont décrit un projet de recherche appelé Wrangler, qui était « un système interactif pour créer des transformations de données.» Wrangler a introduit une nouvelle façon d’effectuer la préparation de données par interaction directe avec les données présentées dans une interface visuelle. Les analystes pourraient explorer, modifier et manipuler les données de manière interactive et voir immédiatement les résultats. Wrangler suivait les transformations de données de l’utilisateur et pouvait ensuite générer automatiquement du code ou des scripts qui pouvaient être appliqués à plusieurs reprises sur d’autres jeux de données (machine learning). 

En 2012, Kandel, Hellerstein, Heer ont fondé Trifacta pour commercialiser cette solution. Berkeley permet aux professeurs de prendre trois ans afin de développer leur activité, ce que Hellerstein a fait. Il est reparti à Berkeley mais reste très impliqué dans l’activité de Trifacta. Quand on lui demande pourquoi il a suivi un tel parcours, Joe Hellerstein répond : « Toute ma carrière a été autour de la donnée, depuis mes premiers travaux de recherche comme stagiaire chez IBM. Je travaillais à l’époque sur les bases de données, un élément au sens propre central qui touche l’ensemble des sciences informatiques : programmation, algorithmes, optimisation des performances, le traitement parallèle des données. Devenu professeur, j’ai ensuite continué dans cette voie et sur ces travaux, même si tout au long de cette carrière j’ai toujours été en rapport proche avec le monde de l’entreprise. »

LE MONDE DE LA DONNÉE A EXPLOSÉ

Depuis ses débuts quels éléments ont fondamentalement changé ? Joe Hellerstein répond de manière enthousiaste : « Le monde a explosé en dehors des bases de données. Le Web, le partage des fichiers l’ensemble des éléments de cette révolution sont en lien avec les données. Le débat ne tourne pas autour des capacités de calcul. Les nouvelles racines de l’innovation viennent de start-up, comme en son temps Greenplum, un projet auquel j’ai participé, avec de plus en plus de gens sur des applications et un travail sur l’interaction entre l’humain et la donnée et entre les données elles-mêmes. L’intérêt de l’interaction entre les ordinateurs a changé, les machines, vers cette autre partie avec une échelle beaucoup plus large. Cela continue avec des bases de données encore plus rapides sur ces compétences plus anciennes. » 

Mais comment est intervenu son travail sur le wrangling et la naissance de Trifacta ? « C’était une curiosité. Nous passions énormément de temps à nettoyer et à préparer les données, ce qui est extrêmement frustrant, et il semblait difficile de résoudre le problème. Nous nous sommes attelés à ce problème et avons poursuivi assidûment ce travail en privilégiant le côté pratique. Notre but n’était pas de créer un robot mais un produit. Nous ne cherchions pas à faire fonctionner un outil de Machine Learning et nous sommes entrés dans un processus totalement empirique de tests et de mesures. Ce qui est beaucoup moins technique! 

« Sur cette construction s’est élaboré ce self-service de préparation de données par tests successifs. Il a connu une rapide adoption dans le secteur des services financiers. La solution s’est enrichie de la possibilité d’utiliser ECS d’Amazon pour créer des modèles. Dans la recherche, le deep learning est le sujet du moment et il est extrêmement empirique. Cela a permis cependant des progrès remarquables dans divers domaines comme la traduction. 

« Comparativement à une traduction manuelle, un modèle linguistique élaboré utilisant des réseaux de neurones arrive à de bien meilleurs résultats. Cela existe déjà en production. Cela fonctionne aussi pour le Big Data, il suffit de mettre en place des cycles de puces graphiques sur Amazon pour obtenir la puissance de calcul nécessaire. Ce ne sont pas les mathématiques le défi de l’opération, mais la gestion de l’expérimentation. Il faut tracer en évitant de bâtir de mauvais modèles lors des tests. Il existe de magnifiques théories sur le sujet mais nous n’avançons pas énormément dans le domaine. Le problème est la gestion de la donnée, la gestion de l’expérimentation sur la gestion de la donnée. Les données sont structurées mais dans une base on peut avoir des données qui ont le même nom. Nous avons deux descriptions différentes de la même chose. De ce fait les entreprises n’ont pas assez de données pour entraîner les algorithmes et les modèles appliqués. Nous pouvons cependant avoir une philosophie différente et appliquer un entraînement actif. Nous avons des certitudes sur certaines choses. Pourquoi ne pas appliquer l’entraînement que sur les ambiguïtés. Les questions seraient bien meilleures lors de cette phase d’entraînement. Je suis à Paris pour intervenir lors d’un colloque sur cette question avec une présentation sur le contexte de la donnée, un sujet de débat et de recherche aujourd’hui. »

DE NOMBREUX AUTRES SUJETS DE RECHERCHE

Interrogé sur les autres sujets importants du moment et comment il considère les avancées de l’Intelligence artificielle et si elle peut s’appliquer dans une certaine mesure pour automatiser les opérations dans l’outil de préparation des données de Trifacta, Joe Hellerstein répond : « Il y a différentes intelligences générales. Le problème est le transfert de l’enseignement de l’une à l’autre. Il existe quelques exemples. Cependant la valeur d’un modèle propriétaire provient surtout de la manière dont il a été entraîné qui est unique. Une recommandation, une traduction, des scénarios de questionnement comme dans les chatbots, il restera le problème d’entraîner à partir de l’ensemble des données de l’entreprise. 

« Il est très compliqué d’entraîner de larges jeux de données pour des usages spécifiques et pourtant ce deep learning ne peut s’appliquer que sur de larges jeux de données pour être valide. Sans compter sur les pré-requis nécessaires. La suite d’outils dans l’Intelligence artificielle est terrible. À Berkeley, pour la chaîne d’Intelligence artificielle, nous développons une plate-forme pour atteindre une grande robustesse dans les tests sur l’Intelligence artificielle. Tous les artefacts, chaque élément de l’entraînement, chaque ligne de code suit un process expérimental précis. Il faudrait peut-être ralentir le process pour avoir la capacité de reproduire de réelles expérimentations scientifiques. Mais cela reste compliqué du fait que les changements mettent au défi tout ce qui tourne autour du contexte de la donnée. Pour obtenir un meilleur Machine Learning dans les années à venir, cela va rester encore très empirique.» 

Il ne croit pas vraiment non plus à une entreprise qui soit capable de prendre des décisions sur des opérations à très haut niveau de manière autonome ou juste sur une spécialisation comme la supply chain. Mais plus à des approches de self-service adaptées à l’entreprise et pense que cela sera le sujet de conversation jusqu’en 2020. Il explique cette intuition par le fait que cela existe déjà dans l’infrastructure et que cela va arriver rapidement dans des outils comme ceux de Trifacta. Il ajoute : « Nous allons interroger notre capacité d’innovation dans ce sens. »


LE CONTEXTE DE LA DONNÉE

Pour rester simple, le contexte de la donnée regroupe toutes les informations autour de l’usage de la donnée. Il se compose principalement de trois éléments, le contexte de l’application (code, modèles, vues), du contexte comportemental (lignage de la donnée, usage), les changements (versioning). Ce contexte global est reproduit dans un métamodèle. L’idée est d’alimenter les outils de Machine Learning qui sont aujourd’hui assez pauvres, que ce soit dans la création des pipelines ou dans l’entraînement des modèles. Lorsqu’un pipeline s’exécute les nouveaux éléments sont automatiquement repris dans le métamodèle qui enregistre les changements.

2202

x
Rechercher dans les dossiers

Actuellement à la Une...
Preuve s’il en est du dynamisme de la filière cybersécurité en France, c’est une cinquantaine de candidatures que le jury chargé de décerner le prix Startup du FIC ont dû départager. La messagerie instantanée Olvid a remporté le trophée.

Disponible depuis quelques semaines pour les internautes américains, le nouvel algorithme doit rendre plus efficaces les recherches complexes ou exprimées en langage quasi naturel associant de nombreux mots avec des prépositions.

C’est la fin de l’application de gestion de tâches, rachetée en 2015 puis dépecée par Microsoft. Elle est remplacée par To Do, l’application maison de Redmond vers laquelle se sont reportées la majeure partie des fonctionnalités de Wunderlist.

Surfant sur la maturité du multicloud, le spécialiste français des interconnexions cloud annonce avoir réuni 22 millions d’euros auprès de ses investisseurs historiques et de nouveaux entrants au capital, dont Orange Digital Ventures. Cette somme permettra à Intercloud de se renforcer en Europe.

La Cnil vient de mettre en demeure une entreprise de la région toulousaine qui abusait un peu trop de la vidéosurveillance dans ses locaux, surtout à des fins de localisation de ses salariés, le tout accompagné d’un défaut d’information et de sécurisation.

Des milliards d'euros de TVA qui devraient normalement être collectés par les grandes plates-formes e-commerce échappent toujours au fisc.

La Banque Européenne d’Investissement vient d’accorder à Orange un prêt de 700 millions d’euros. Une somme considérable qui doit aider l’opérateur historique à rendre raccordable en fibre optique le tiers des AMII (Appel à manifestation d’intentions d’investissements) qu’il doit encore fibrer avant la fin de l’année prochaine.

Ce n’est pas joli-joli. Entre 2000 et 2016, Ericsson a mis en place et entretenu un vaste système de pots de vin dans au moins cinq pays. L’équipementier met désormais fin aux poursuites aux Etats-Unis en versant un milliard de dollars au Department of Justice et à la SEC.

Le grossiste de liens fibre est passé à deux doigts de la liquidation judiciaire : deux de ses investisseurs, OVH et la Banque des Territoires, ont accepté de sortir à nouveau le portefeuille pour offrir un répit de quelques mois à Kosc, un délai au cours duquel il doit trouver repreneur.

Après Oodrive en janvier, c’est au tour de Outscale d’obtenir la précieuse qualification SecNumCloud, délivrée par l’Anssi. Outre la reconnaissance des engagements de la filiale de Dassault Systèmes en matière de sécurité, ce « visa de sécurité » est surtout un argument dont Outscale pourra se targuer auprès de ses clients.

Toutes les News
LIVRES BLANCS
Les entreprises et les organismes publics se focalisent aujourd’hui sur la transformation numérique. En conséquence, les DevOps et l’agilité sont au premier plan des discussions autour des stratégies informatiques. Pour offrir ces deux avantages, les entreprises travaillent de plus en plus avec les fournisseurs de services de cloud public et développent désormais des clouds sur site à partir d’une infrastructure qui répond à trois exigences de base:
1. Agilité sans friction des ressources physiques
2. Systèmes de contrôle optimisant l'utilisation des ressources physiques et offrant un retour sur investissement maximal
3. Intégration des divers composants de l'infrastructure pour un provisionnement et une gestion des ressources automatisés.


Pour fonctionner, votre entreprise doit pouvoir compter sur une solution de sauvegarde efficace, essentielle dans un monde marqué par une croissance exponentielle des données. Vous devez à la fois accélérer vos sauvegardes et pouvoir y accéder plus rapidement pour satisfaire les exigences actuelles de continuité d’activité, disponibilité, protection des données et conformité réglementaire. Dans cette ère de croissance effrénée, les cibles sur bande hors site et autres approches traditionnelles sont simplement dépassées.


L’Intelligence Artificielle promet de révolutionner la perception de la cybersécurité au coeur des entreprises, mais pas uniquement. Ce changement de paradigme engage, en effet, une redéfinition complète des règles du jeu pour les DSI et les RSSI, ainsi que l’ensemble des acteurs de la sécurité.


Lorsque l'on déploie des postes de travail, ils ont généralement tous la même configuration matérielle et logicielle (avec certaines spécificités selon les services). Mais on ne peut pas toujours tout prévoir et il arrive par exemple que de nouveaux programmes doivent être installés ou n’aient pas été prévus. L’accumulation de logiciels « lourds » est susceptible de provoquer des lenteurs significatives sur un PC allant jusqu’à l’extinction nette de l’application. Ce livre blanc explique comment optimiser les performances au travers de 5 conseils rapides à mettre en place.


Ce guide est conçu pour aider les entreprises à évaluer les solutions de sécurité des terminaux. Il peut être utilisé par les membres de l'équipe de réponse aux incidents et des opérations de sécurité travaillant avec des outils de sécurité des points finaux sur une base quotidienne. Il peut également être utilisé par les responsables informatiques, les professionnels de la sécurité, les responsables de la conformité et d’autres personnes pour évaluer leurs performances. les capacités de l’entreprise en matière de cybersécurité, identifier les lacunes dans la sécurité des terminaux et sélectionner les bons produits pour combler ces lacunes.


Tous les Livres Blancs